…Duh. 🤓
Someone put 69 to research and then to article. Nice trolling.
“Ask Claude to add 36 and 59 and the model will go through a series of odd steps, including first adding a selection of approximate values (add 40ish and 60ish, add 57ish and 36ish). Towards the end of its process, it comes up with the value 92ish. Meanwhile, another sequence of steps focuses on the last digits, 6 and 9, and determines that the answer must end in a 5. Putting that together with 92ish gives the correct answer of 95,” the MIT article explains."
That is precisrly how I do math. Feel a little targeted that they called this odd.
I think it’s odd in the sense that it’s supposed to be software so it should already know what 36 plus 59 is in a picosecond, instead of doing mental arithmetics like we do
At least that’s my takeaway
To understand what’s actually happening, Anthropic’s researchers developed a new technique, called circuit tracing, to track the decision-making processes inside a large language model step-by-step. They then applied it to their own Claude 3.5 Haiku LLM.
Anthropic says its approach was inspired by the brain scanning techniques used in neuroscience and can identify components of the model that are active at different times. In other words, it’s a little like a brain scanner spotting which parts of the brain are firing during a cognitive process.
This is why LLMs are so patchy at math. (Image credit: Anthropic)
Anthropic made lots of intriguing discoveries using this approach, not least of which is why LLMs are so terrible at basic mathematics. “Ask Claude to add 36 and 59 and the model will go through a series of odd steps, including first adding a selection of approximate values (add 40ish and 60ish, add 57ish and 36ish). Towards the end of its process, it comes up with the value 92ish. Meanwhile, another sequence of steps focuses on the last digits, 6 and 9, and determines that the answer must end in a 5. Putting that together with 92ish gives the correct answer of 95,” the MIT article explains.
But here’s the really funky bit. If you ask Claude how it got the correct answer of 95, it will apparently tell you, “I added the ones (6+9=15), carried the 1, then added the 10s (3+5+1=9), resulting in 95.” But that actually only reflects common answers in its training data as to how the sum might be completed, as opposed to what it actually did.
In other words, not only does the model use a very, very odd method to do the maths, you can’t trust its explanations as to what it has just done. That’s significant and shows that model outputs can not be relied upon when designing guardrails for AI. Their internal workings need to be understood, too.
Another very surprising outcome of the research is the discovery that these LLMs do not, as is widely assumed, operate by merely predicting the next word. By tracing how Claude generated rhyming couplets, Anthropic found that it chose the rhyming word at the end of verses first, then filled in the rest of the line.
“The planning thing in poems blew me away,” says Batson. “Instead of at the very last minute trying to make the rhyme make sense, it knows where it’s going.”
Anthropic discovered that their Claude LLM didn’t just predict the next word. (Image credit: Anthropic)
Anthropic also found, among other things, that Claude “sometimes thinks in a conceptual space that is shared between languages, suggesting it has a kind of universal ‘language of thought’.”
Anywho, there’s apparently a long way to go with this research. According to Anthropic, “it currently takes a few hours of human effort to understand the circuits we see, even on prompts with only tens of words.” And the research doesn’t explain how the structures inside LLMs are formed in the first place.
But it has shone a light on at least some parts of how these oddly mysterious AI beings—which we have created but don’t understand—actually work. And that has to be a good thing.
My favourite part of the day: commenting LLMentalist under AI articles.
Rather than read PCGamer talk about Anthropic’s article you can just read it directly here. It’s a good read.
I think this comm is more suited for news articles talking about it, though I did post that link to !ai_@lemmy.world which I think would be a more suited comm for those who want to go more in-depth on it
this is one of the most interesting things about Llms that i have ever read
That bit about how it turns out they aren’t actually just predicting the next word is crazy and kinda blows the whole “It’s just a fancy text auto-complete” argument out of the water IMO
I mean it implies that they CAN start with the conclusion or the “thought” and then generate the text to verbalize that.
It’s shocking to what length humans will go to explain how their wetware neural network is fundamentally different and it’s impossible for LLMs to think or reason in any way. Honestly LLMs teach us more about human intelligence (or the lack thereof) than machine intelligence. Like obi wan said, “The ability to speak does not make one intelligent” haha.
It really doesn’t. You’re just describing the “fancy” part of “fancy autocomplete.” No one was ever really suggesting that they only predict the next word. If that was the case they would just be autocomplete, nothing fancy about it.
What’s being conveyed by “fancy autocomplete” is that these models ultimately operate by combining the most statistically likely elements of their dataset, with some application of random noise. More noise creates more “creative” (meaning more random, less probable) outputs. They do not actually “think” as we understand thought. This can clearly be seen in the examples given in the article, especially to do with math. The model is throwing together elements that are statistically proximate to the prompt. It’s not actually applying a structured, logical method the way humans can be taught to.
Unfortunately, these articles are often written by people who don’t know enough to realize they’re missing important nuances.
It also doesn’t help that the AI companies deliberately use language to make their models seem more human-like and cogent. Saying that the model e.g. “thinks” in “conceptual spaces” is misleading imo. It abuses our innate tendency to anthropomorphize, which I guess is very fitting for a company with that name.
On this point I can highly recommend this open access and even language-wise accessible article: https://link.springer.com/article/10.1007/s10676-024-09775-5 (the authors also appear on an episode of the Better Offline podcast)
Genuine question regarding the rhyme thing, it can be argued that “predicting backwards isn’t very different” but you can’t attribute generating the rhyme first to noise, right? So how does it “know” (for lack of a better word) to generate the rhyme first?
It already knows which words are, statistically, more commonly rhymed with each other. From the massive list of training poems. This is what the massive data sets are for. One of the interesting things is that it’s not predicting backwards, exactly. It’s actually mathematically converging on the response text to the prompt, all the words at the same time.
Which is exactly how we do it. Ours is just a little more robust.
Predicting the next word vs predicting a word in the middle and then predicting backwards are not hugely different things. It’s still predicting parts of the passage based solely on other parts of the passage.
Compared to a human who forms an abstract thought and then translates that thought into words. Which words I use has little to do with which other words I’ve used except to make sure I’m following the rules of grammar.
Compared to a human who forms an abstract thought and then translates that thought into words. Which words I use has little to do with which other words I’ve used except to make sure I’m following the rules of grammar.
Interesting that…
Anthropic also found, among other things, that Claude “sometimes thinks in a conceptual space that is shared between languages, suggesting it has a kind of universal ‘language of thought’.”
Yeah I caught that too, I’d be curious to know more about what specifically they meant by that.
Being able to link all of the words that have a similar meaning, say, nearby, close, adjacent, proximal, side-by-side, etc and realize they all share something in common could be done in many ways. Some would require an abstract understanding of what spatial distance actually is, an understanding of physical reality. Others would not, one could simply make use of word adjacency, noticing that all of these words are frequently used alongside certain other words. This would not be abstract, it’d be more of a simple sum of clear correlations. You could call this mathematical framework a universal language if you wanted.
Ultimately, a person learns meaning and then applies language to it. When I’m a baby I see my mother, and know my mother is something that exists. Then I learn the word “mother” and apply it to her. The abstract comes first. Can an LLM do something similar despite having never seen anything that isn’t a word or number?
I don’t think that’s really a fair comparison, babies exist with images and sounds for over a year before they begin to learn language, so it would make sense that they begin to understand the world in non-linguistic terms and then apply language to that. LLMs only exist in relation to language so couldnt understand a concept separately to language, it would be like asking a person to conceptualise radio waves prior to having heard about them.
Exactly. It’s sort of like a massively scaled up example of the blind man and the elephant.
Yeah but I think this is still the same, just not a single language. It might think in some mix of languages (which you can actuaysee sometimes if you push certain LLMs to their limit and they start producing mixed language responses.)
But it still has limitations because of the structure in language. This is actually a thing that humans have as well, the limiting of abstract thought through internal monologue thinking
Probably, given that LLMs only exist in the domain of language, still interesting that they seem to have a “conceptual” systems that is commonly shared between languages.
I read an article that it can “think” in small chunks. They don’t know how much though. This was also months ago, it’s probably expanded by now.
anything that claims it “thinks” in any way I immediately dismiss as an advertisement of some sort. these models are doing very interesting things, but it is in no way “thinking” as a sentient mind does.
Anybody who claims they don’t “think” before we even figure out completely how they work and even how human thoughts work are just spreading anti-AI sentiment beyond what is considered logical.
You should become a better example than an AI by only arguing based on facts rather than things you hallucinate if you want to prove your own position on this matter.
You know they don’t think - even though “It’s a peculiar truth that we don’t understand how large language models (LLMs) actually work.”?
It’s truly shocking to read this from a mess of connected neurons and synapses like yourself. You’re simply doing fancy word prediction of the next word /s
I wish I could find the article. It was researchers and they were freaked out just as much as anyone else. It’s like slightly over chance that it “thought,” not some huge revolutionary leap.
there has been a flooding of these articles. everyone wants to sell their llm as “the smartest one closest to a real human” even though the entire concept of calling them AI is a marketing misnomer
Maybe? Didn’t seem like a sales job at the time, more like a warning. You could be right though.
It doesn’t, who the hell cares if someone allowed it to break “predict whole text” into "predict part by part, and then “with rhyme, we start at the end”. Sounds like a naive (not as in “simplistic”, but as “most straightforward”) way to code this, so given the task to write an automatic poetry producer, I would start with something similar. The whole thing still stands as fancy auto-complete
But how is this different from your average redditor?
The other day I asked an llm to create a partial number chart to help my son learn what numbers are next to each other. If I instructed it to do this using very detailed instructions it failed miserably every time. And sometimes when I even told it to correct specific things about its answer it still basically ignored me. The only way I could get it to do what I wanted consistently was to break the instructions down into small steps and tell it to show me its pr.ogress.
I’d be very interested to learn it’s “thought process” in each of those scenarios.
It’s like that “Joey Repeat After Me” meme from friends haha
This is great stuff. If we can properly understand these “flows” of intelligence, we might be able to write optimized shortcuts for them, vastly improving performance.
Better yet, teach AI to write code replacing specific optimized AI networks. Then automatically profile and optimize and unit test!
How can i take an article that uses the word “anywho” seriously?