I see a lot of misunderstandings in the comments 🫤
This is a pretty important finding for researchers, and it’s not obvious by any means. This finding is not showing a problem with LLMs’ abilities in general. The issue they discovered is specifically for so-called “reasoning models” that iterate on their answer before replying. It might indicate that the training process is not sufficient for true reasoning.
Most reasoning models are not incentivized to think correctly, and are only rewarded based on their final answer. This research might indicate that’s a flaw that needs to be corrected before models can actually reason.
What confuses me is that we seemingly keep pushing away what counts as reasoning. Not too long ago, some smart alghoritms or a bunch of instructions for software (if/then) was officially, by definition, software/computer reasoning. Logically, CPUs do it all the time. Suddenly, when AI is doing that with pattern recognition, memory and even more advanced alghoritms, it’s no longer reasoning? I feel like at this point a more relevant question is “What exactly is reasoning?”. Before you answer, understand that most humans seemingly live by pattern recognition, not reasoning.
If you want to boil down human reasoning to pattern recognition, the sheer amount of stimuli and associations built off of that input absolutely dwarfs anything an LLM will ever be able to handle. It’s like comparing PhD reasoning to a dog’s reasoning.
While a dog can learn some interesting tricks and the smartest dogs can solve simple novel problems, there are hard limits. They simply lack a strong metacognition and the ability to make simple logical inferences (eg: why they fail at the shell game).
Now we make that chasm even larger by cutting the stimuli to a fixed token limit. An LLM can do some clever tricks within that limit, but it’s designed to do exactly those tricks and nothing more. To get anything resembling human ability you would have to design something to match human complexity, and we don’t have the tech to make a synthetic human.
Cognitive scientist Douglas Hofstadter (1979) showed reasoning emerges from pattern recognition and analogy-making - abilities that modern AI demonstrably possesses. The question isn’t if AI can reason, but how its reasoning differs from ours.
What statistical method do you base that claim on? The results presented match expectations given that Markov chains are still the basis of inference. What magic juice is added to “reasoning models” that allow them to break free of the inherent boundaries of the statistical methods they are based on?
I’d encourage you to research more about this space and learn more.
As it is, the statement “Markov chains are still the basis of inference” doesn’t make sense, because markov chains are a separate thing. You might be thinking of Markov decision processes, which is used in training RL agents, but that’s also unrelated because these models are not RL agents, they’re supervised learning agents. And even if they were RL agents, the MDP describes the training environment, not the model itself, so it’s not really used for inference.
I mean this just as an invitation to learn more, and not pushback for raising concerns. Many in the research community would be more than happy to welcome you into it. The world needs more people who are skeptical of AI doing research in this field.
Which method, then, is the inference built upon, if not the embeddings? And the question still stands, how does “AI” escape the inherent limits of statistical inference?
I see a lot of misunderstandings in the comments 🫤
This is a pretty important finding for researchers, and it’s not obvious by any means. This finding is not showing a problem with LLMs’ abilities in general. The issue they discovered is specifically for so-called “reasoning models” that iterate on their answer before replying. It might indicate that the training process is not sufficient for true reasoning.
Most reasoning models are not incentivized to think correctly, and are only rewarded based on their final answer. This research might indicate that’s a flaw that needs to be corrected before models can actually reason.
When given explicit instructions to follow models failed because they had not seen similar instructions before.
This paper shows that there is no reasoning in LLMs at all, just extended pattern matching.
Yeah these comments have the three hallmarks of Lemmy:
Thanks for being at least the latter.
What confuses me is that we seemingly keep pushing away what counts as reasoning. Not too long ago, some smart alghoritms or a bunch of instructions for software (if/then) was officially, by definition, software/computer reasoning. Logically, CPUs do it all the time. Suddenly, when AI is doing that with pattern recognition, memory and even more advanced alghoritms, it’s no longer reasoning? I feel like at this point a more relevant question is “What exactly is reasoning?”. Before you answer, understand that most humans seemingly live by pattern recognition, not reasoning.
https://en.wikipedia.org/wiki/Reasoning_system
If you want to boil down human reasoning to pattern recognition, the sheer amount of stimuli and associations built off of that input absolutely dwarfs anything an LLM will ever be able to handle. It’s like comparing PhD reasoning to a dog’s reasoning.
While a dog can learn some interesting tricks and the smartest dogs can solve simple novel problems, there are hard limits. They simply lack a strong metacognition and the ability to make simple logical inferences (eg: why they fail at the shell game).
Now we make that chasm even larger by cutting the stimuli to a fixed token limit. An LLM can do some clever tricks within that limit, but it’s designed to do exactly those tricks and nothing more. To get anything resembling human ability you would have to design something to match human complexity, and we don’t have the tech to make a synthetic human.
Cognitive scientist Douglas Hofstadter (1979) showed reasoning emerges from pattern recognition and analogy-making - abilities that modern AI demonstrably possesses. The question isn’t if AI can reason, but how its reasoning differs from ours.
What statistical method do you base that claim on? The results presented match expectations given that Markov chains are still the basis of inference. What magic juice is added to “reasoning models” that allow them to break free of the inherent boundaries of the statistical methods they are based on?
I’d encourage you to research more about this space and learn more.
As it is, the statement “Markov chains are still the basis of inference” doesn’t make sense, because markov chains are a separate thing. You might be thinking of Markov decision processes, which is used in training RL agents, but that’s also unrelated because these models are not RL agents, they’re supervised learning agents. And even if they were RL agents, the MDP describes the training environment, not the model itself, so it’s not really used for inference.
I mean this just as an invitation to learn more, and not pushback for raising concerns. Many in the research community would be more than happy to welcome you into it. The world needs more people who are skeptical of AI doing research in this field.
Which method, then, is the inference built upon, if not the embeddings? And the question still stands, how does “AI” escape the inherent limits of statistical inference?